anya/tools/event-prompt-augmentations.ts

279 lines
8.4 KiB
TypeScript

// event-prompt-augmentations.ts
import { RunnableToolFunctionWithParse } from "openai/lib/RunnableFunction.mjs";
import { get_transcription } from "./ask"; // or wherever your get_transcription function lives
import { Message } from "../interfaces/message";
import { buildSystemPrompts } from "../assistant/system-prompts";
import { getTools } from ".";
/**
* The shape of data returned from any specialized event augmentation.
*/
export interface PromptAugmentationResult {
additionalSystemPrompt?: string;
updatedSystemPrompt?: string;
message?: string;
updatedTools?: RunnableToolFunctionWithParse<any>[];
attachedImageBase64?: string;
model: string;
}
/**
* 1) Voice Event Augmentation
* - Possibly do transcription if an audio File is present.
* - Possibly convert an image File to base64 if present.
* - Add any extra system prompt text needed for "voice mode."
*/
async function voiceEventAugmentation(
payload: Record<string, any>,
baseTools: RunnableToolFunctionWithParse<any>[] | undefined,
contextMessage: Message
): Promise<PromptAugmentationResult> {
let attachedImageBase64: string | undefined;
// Transcribe if there's an audio file
if (payload?.transcription && payload.transcription instanceof File) {
console.log("Transcribing audio for voice event listener.");
const file = payload.transcription;
payload.transcription = await get_transcription(file as globalThis.File);
}
// Check for an attached image
const otherContextData = payload?.other_reference_data;
if (
otherContextData instanceof File &&
otherContextData.type.includes("image")
) {
console.log("Got image in voice event payload; converting to base64...");
const buffer = await otherContextData.arrayBuffer();
attachedImageBase64 = `data:${otherContextData.type};base64,${Buffer.from(
buffer
).toString("base64")}`;
}
let message = `
You are in voice trigger mode.
The voice event that triggered this is:
Payload: ${JSON.stringify(payload, null, 2)}
Your response must be in plain text without extra formatting or Markdown.
`;
const systemPrompts = await buildSystemPrompts(contextMessage);
const prompt = systemPrompts.map((p) => p.content).join("\n\n");
const tools = getTools(
contextMessage.author.username,
contextMessage
) as RunnableToolFunctionWithParse<any>[];
return {
updatedSystemPrompt: prompt,
message,
updatedTools: tools,
attachedImageBase64,
model: "gpt-4o",
};
}
/**
* 2) New Todo Note Event Augmentation
*/
async function newTodoAugmentation(
payload: Record<string, any>,
baseTools: RunnableToolFunctionWithParse<any>[] | undefined,
contextMessage: Message
): Promise<PromptAugmentationResult> {
let message = `
You are in new todo note trigger mode.
The user added a new todo note which triggered this event.
Payload: ${JSON.stringify(payload, null, 2)}
Make sure to handle the user's newly added todo item.
IMPORTANT: Mark the todo as done if appropriate, etc.
`;
let systemPrompts = await buildSystemPrompts(contextMessage);
const prompt = systemPrompts.map((p) => p.content).join("\n\n");
const tools = getTools(
contextMessage.author.username,
contextMessage
) as RunnableToolFunctionWithParse<any>[];
return {
additionalSystemPrompt: prompt,
message,
updatedTools: tools,
model: "gpt-4o-mini",
};
}
/**
* 3) Message from a Manager Event Augmentation
*/
async function messageFromManagerAugmentation(
payload: Record<string, any>,
baseTools: RunnableToolFunctionWithParse<any>[] | undefined,
contextMessage: Message
): Promise<PromptAugmentationResult> {
const message = `
You just got a request from a manager.
Payload: ${JSON.stringify(payload, null, 2)}
Handle it accordingly.
`;
const tools = getTools(
contextMessage.author.username,
contextMessage
) as RunnableToolFunctionWithParse<any>[];
return {
message,
updatedTools: tools,
model: "gpt-4o-mini",
};
}
/**
* 4) Default/Fallback Augmentation
*/
async function defaultAugmentation(
payload: Record<string, any>,
baseTools: RunnableToolFunctionWithParse<any>[] | undefined
): Promise<PromptAugmentationResult> {
return {
updatedTools: baseTools,
attachedImageBase64: undefined,
model: "gpt-4o-mini",
};
}
/**
* A map/dictionary that returns specialized logic keyed by `eventId`.
* If no exact eventId match is found, we will fallback to `defaultAugmentation`.
*/
export const eventPromptAugmentations: Record<
string,
(
payload: Record<string, any>,
baseTools: RunnableToolFunctionWithParse<any>[] | undefined,
contextMessage: Message
) => Promise<PromptAugmentationResult>
> = {
on_voice_message: voiceEventAugmentation,
new_todo_for_anya: newTodoAugmentation,
message_from_a_manager: messageFromManagerAugmentation,
// Add more eventId-specific augmentations as needed...
};
/**
* Builds the final prompt and attaches any relevant tooling or attachments
* for a given event and instruction. Consolidates the "branching logic" into
* modular augmentations, removing scattered if/else from the main file.
*/
export async function buildPromptAndToolsForEvent(
eventId: string,
description: string,
payload: Record<string, any>,
instruction: string,
notify: boolean,
baseTools: RunnableToolFunctionWithParse<any>[] | undefined,
contextMessage: Message
): Promise<{
finalPrompt: string;
message?: string;
finalTools: RunnableToolFunctionWithParse<any>[] | undefined;
attachedImage?: string;
model?: string;
}> {
console.log(`Building prompt for event: ${eventId}`);
console.log(`Instruction: ${instruction}`);
console.log(`Payload: ${JSON.stringify(payload, null, 2)}`);
// 1) A base system prompt shared by all "instruction" type listeners
const baseSystemPrompt = `You are an Event Handler.
You are called when an event triggers. Your task is to execute the user's instruction based on the triggered event and reply with the text to display as a notification to the user.
**Guidelines:**
- **Notification to User:**
- Any message you reply with will automatically be sent to the user as a notification.
- Do **not** indicate in the text that it is a notification.
- **Using Tools:**
- You have access to the necessary tools to execute the instruction; use them as needed.
- You also have access to the \`event_manager\` tool if you need to manage events or listeners (use it only if necessary).
- **Sending Messages:**
- **To the Current User:**
- Do **not** ask \`communication_manager\` tool.
- Simply reply with the message you want to send.
- **To Other Users:**
- Use the \`communication_manager\` tool.
- The message you reply with will still be sent to the current user as a notification.
**Example:**
- **Instruction:** "When you get an email from John, tell John on WhatsApp that you got the email."
- **Steps:**
1. Use the \`communication_manager\` tool to send a message to John on WhatsApp.
2. Reply to the current user with "I have sent a message to John on WhatsApp that you got the email."
**Currently Triggered Event:**
- **Event ID:** ${eventId}
- **Description:** ${description}
- **Payload:** ${JSON.stringify(payload, null, 2)}
- **Will Auto Notify Creator of Listener:** ${
notify
? "Yes, no need to send it yourself"
: "No, you need to notify the user manually"
}
- **Instruction:** ${instruction}
**Action Required:**
- Follow the instruction provided in the payload.
- Return the notification text based on the instruction.
**Important Note:**
- If the event and payload do **not** match the instruction, reply with **"IGNORE"**.
`;
// 2) Decide which augmentation function to call
let augmentationFn = eventPromptAugmentations[eventId];
if (!augmentationFn) {
// Example: if your eventId is "message_from_xyz", handle it as a manager augmentation
if (eventId.startsWith("message_from")) {
augmentationFn = messageFromManagerAugmentation;
} else {
augmentationFn = defaultAugmentation;
}
}
// 3) Run the specialized augmentation
const {
additionalSystemPrompt,
updatedTools,
attachedImageBase64,
updatedSystemPrompt,
model,
message,
} = await augmentationFn(payload, baseTools, contextMessage);
// 4) Combine prompts
const finalPrompt = [baseSystemPrompt, additionalSystemPrompt]
.filter(Boolean)
.join("\n\n");
return {
finalPrompt: updatedSystemPrompt || finalPrompt,
finalTools: updatedTools,
attachedImage: attachedImageBase64,
model,
message,
};
}